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Abstract— Optimal decision-making for trajectory tracking
in partially observable, stochastic environments where the
number of active localization updates—the process by which the
agent obtains its true state information from the sensors—are
limited, presents a significant challenge. Traditional methods
often struggle to balance resource conservation, accurate
state estimation and precise tracking, resulting in suboptimal
performance. This problem is particularly pronounced in
environments with large action spaces, where the need for
frequent, accurate state data is paramount, yet the capacity for
active localization updates is restricted by external limitations.
This paper introduces ComTraQ-MPC, a novel framework
that combines Deep Q-Networks (DQN) and Model Predictive
Control (MPC) to optimize trajectory tracking with constrained
active localization updates. The meta-trained DQN ensures
adaptive active localization scheduling, while the MPC leverages
available state information to improve tracking. The central
contribution of this work is their reciprocal interaction: DQN’s
update decisions inform MPC’s control strategy, and MPC’s
outcomes refine DQN’s learning, creating a cohesive, adaptive
system. Empirical evaluations in simulated and real-world
settings demonstrate that ComTraQ-MPC significantly enhances
operational efficiency and accuracy, providing a generalizable
and approximately optimal solution for trajectory tracking in
complex partially observable environments. [Code]1 [Video]2

I. INTRODUCTION

In the context of autonomous navigation, an active
localization update [1], [2] refers to an action which provides
the agent with its true state information, from sensor data,
within the environment it is operating in. Addressing trajectory
tracking within environments characterized by a limited
number of active localization updates and partial observability
presents a critical challenge in the development of autonomous
systems [3]. Such constraints are not merely technical
limitations but are often necessitated by the operational
environment itself [4]. Every instance of actively localizing
is a double-edged sword — it helps the agent get better state
estimates using sensory data at the cost of depletion of limited
resources [5] or increased risk of detection in sensitive appli-
cations [6]. The traditional paradigms of trajectory tracking,
heavily reliant on uninterrupted data flows for state estimation
and control [7]–[9], are ill-equipped to handle such scenarios.

The advent of learning-based methods [10]–[12] has
introduced significant advancements in autonomous trajectory
tracking. However, these approaches often grapple with the
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(a) (b)

Fig. 1: Performance of ComTraQ-MPC: Fig. (a) depicts
ComTraQ-MPC in a known (previously seen during
meta-training), trajectory (134 waypoints, active localization
budget: 10) and (b) in a previously unseen, longer trajectory
(245 waypoints, active localization budget: 20). Start and
goal points are marked by blue and orange dots, respectively,
with the red dotted line showing the reference trajectory and
the green line the ComTraQ-MPC path.

complexities of large state and action spaces [13], requiring
substantial training and continuous dependency on true state
data. Hence limited number of active localization updates and
partial observability become a bottleneck in scenarios where
the availability of such sensory data is heavily restricted [14].

Recent studies have explored deep reinforcement learning
for optimal communication strategies in multi-agent systems
[15], [16]. A common limitation among these works is that,
they presuppose full observability of the agent’s own state
and partial observability of the other agents. Hence, the
communication action is only used to estimate the states of
other agents and not for localizing the agent itself.

Additionally, some studies have tackled the issue of the
agent’s own state’s partial observability by framing the
trajectory tracking problem as a Partially Observable Markov
Decision Process (POMDP). The research in [17] introduces
a tree search strategy for addressing trajectory tracking
formulated as a POMDP, which may lead to computational
challenges with expanding action spaces [18]. Likewise,
[19] employs belief space planning for navigating partially
observable scenarios. However, these approaches are solely
dependent on passive localization updates, utilizing merely
the agent’s belief state for planning purposes. Consequently,
they neglect the significant benefits that could be derived
from strategically leveraging sensor data to achieve precise
state estimation via active localization updates.

The contribution of ComTraQ-MPC to this ongoing
dialogue is significant, offering a comprehensive framework
that not only learns when to perform an active localization
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update to access true state data, but also how to effectively
integrate these decisions with trajectory planning and control
strategies, as highlighted in our empirical evaluations.

A. Contributions

Recognizing the limitations of existing approaches, we
formulate our problem as a Budgeted POMDP (b-POMDP)
to facilitate strict adherence to budget constraints in environ-
ments with partial observability and limited active localization
updates. The core contribution of our work lies in the novel
integration of Deep Q-Networks (DQN) [20] with Model
Predictive Control (MPC) [21], forming the ComTraQ-MPC
framework. The DQN component, meta-trained across diverse
trajectories and budgets, brings to the framework an adaptive
capability for making update decisions—evaluating the value
of active localization based on the current state and trajectory
of the agent. Conversely, the MPC component focuses on
trajectory tracking, utilizing the information available at each
decision point to track the reference trajectory. The essence of
our contribution is encapsulated in the bidirectional feedback
mechanism between DQN and MPC. Localization decisions
made by the DQN directly influence the quality of the state
information that MPC uses for planning. Better-informed state
estimates lead to more accurate trajectory tracking. In return,
the outcomes of MPC’s optimization provide a learning signal
for the DQN in the form of the optimized MPC cost function.
Through this signal, the DQN learns not only from the imme-
diate outcomes of its decisions but also from the longer-term
impacts on trajectory tracking efficiency as mediated by MPC,
effectively closing the loop. We test our approach in real-
world settings and our results show improved trajectory track-
ing performance in environments with active localization up-
date constraints compared to previously established baselines.

II. PRELIMINARIES

We formulate the problem of trajectory tracking in
environments with limited active localization updates as a
special case of POMDPs with budget constraints. Hence we
use the budgeted POMDP framework.

A. Budgeted POMDP

A Budgeted Partially Observable Markov Decision Process
(b-POMDP) [5] in discrete time with a finite horizon and
budget is formalized by an 9-tuple (S,A,T,Ω,O,R,H,B,C(.)).
Here, S is a finite set of states; A is a finite set of actions;
T : S × A → ∆(S) is the transition probability function,
where ∆(S) indicates the set of probability distributions over
S; Ω is a finite set of observations; O :Ω×S×A→∆(Ω) is
the observation probability function, defining the probability
distribution over observations; R :S×A→ [Rmin,Rmax] is the
reward function, assigning a reward value to each state-action
pair; H and B are elements of the set of non-negative integers,
N0, specifying the finite planning horizon and the total
budget for planning, respectively; C(.) is the cost function
which gives the cost incurred by performing an action a∈A.

At a discrete time step k, the agent occupies state sk∈S.
This state sk has two components: a fully observable

cost component, ck and a partially observable non-cost
component. Executing an action ak∈A results in a transition
to a new state sk+1∈S at the next time step with probability
T (sk,ak,sk+1). In this, the transition for the cost component
is deterministic with ck+1=ck+C(ak).

The agent receives an observation ok ∈ Ω about the
environment state with probability O(sk+1,ak,ok), dependent
on sk+1 and ak. The agent, not having direct access to its true
non-cost component, updates its belief using the observation
[22]. A reward rk=R(s,a) is received for the action taken.

The objective in optimizing a policy for a finite-horizon
b-POMDP is to identify a sequence of actions that maximizes
the total expected reward over the planning horizon while
adhering to the total budget B.

The budget constraint can be formulated as

0≤ck≤B ∀k∈{0,1,···,H}. (1)

III. PROBLEM FORMULATION

This work addresses the problem of optimal trajectory track-
ing for an agent acting within the structure of a b-POMDP
with an active localization budget, which represents the max-
imum allowable number of active localization updates. The
agent’s state, denoted as s, is composed of two key elements:

• sp: A partially observable component representing
physical attributes of the agent.

• sl: A fully observable component indicating the
remaining budget.

The transition function governing is given by:

sk+1=

[
spk+1

slk+1

]
=

[
fp(spk,u

p
k,wk)

slk−ulk

]
,

where spk and slk identify the state components at time step
k. The control input at each time step, uk, is divided into
upk for actions that affect the physical state spk and ulk for
active update decisions. Here, ulk is a binary variable, with
0 denoting a passive localization update and 1 signifying
an active update. Also, the physical action component up is
bounded, up∈ [up,min,up,max]. The term wk denotes the zero-
mean stochastic disturbance at time step k affecting spk+1.
The cost function for our problem is defined as C(uk)=ulk

Observations regarding spk are determined by the
observation function:

yk=u
l
k ·s

p
k. (2)

Model (2) implies that the agent acquires its true state if it
opts for an active localization update (ulk = 1); otherwise,
it receives no observation (y = 0). Consequently, while
slk is always fully observable, the agent must rely on its
belief about spk to navigate and make informed decisions in
scenarios devoid of observations.

A. Problem Statement

The core objective of this work is to develop an optimal
policy for this b-POMDP with horizon H and total active
localization budget Bl, aiming to fulfill two requirements:
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Fig. 2: Architectural Overview of ComTraQ-MPC Framework. This diagram illustrates the integration of DQN for dynamic
localization decision-making with MPC for precise trajectory tracking. The architecture encapsulates the synergy between
adaptive active localization scheduling and robust trajectory tracking, highlighting the flow of information and decision
processes that enable effective decision-making in environments with active localization update constraints.

1) ensuring that the agent tracks a given reference
trajectory with high precision, and

2) it does so while adhering to the budget.

Requirement (1) challenges the agent to optimize its
trajectory following capabilities under partial observability
while strategically leveraging limited active localization
updates to access its true state, thus striking a balance between
trajectory tracking efficacy and optimal resource management.

IV. SOLUTION APPROACH

In this section, we elaborate on our approach for deriving
the optimal policy for the problem outlined in Section III.
We present ComTraQ-MPC, a novel hybrid framework that
integrates meta-trained Deep Q-Networks (DQN) with Model
Predictive Control (MPC) to address the challenges inherent
in solving the b-POMDP.

A. ComTraQ-MPC

ComTraQ-MPC provides a framework to compute optimal
policies for the b-POMDP described earlier. Fig. 2 illustrates
the architecture of this framework. Distinctively, owing to
the large action space, ComTraQ-MPC deconstructs the
decision-making problem into two specialized sub-problems:
trajectory tracking and active localization. Doing so allows
the method to leverage the proven strengths of MPC
for trajectory tracking and the adaptive decision-making
capabilities of DQN for determining optimal active update
policies. Through ComTraQ-MPC, we propose an integration
of MPC and DQN to address the dual challenges of precise
trajectory tracking and resource management.

1) MPC for Trajectory Tracking: MPC optimizes future
control actions over a finite horizon to minimize a predefined
cost function [21]. In our framework, MPC is employed
to control the sp component of the state. Due to the partial
observability of sp, the MPC utilizes the mean belief of this
component, s̄p, to guide the trajectory tracking process. This
average belief is estimated using a particle filter approach
(passive localization) [23].

We formulate the MPC optimization problem as:

min
uk:k+HMPC

k+HMPC∑
i=k

∥s̄pi −s
ref
i ∥2,

subject to s̄pk+1=f
p(s̄pk,u

p
k), ∀k,

(3)

where srefi is the state of the reference trajectory at
the same step and HMPC is the prediction horizon. This
cost function aims to minimize the distance between the
agent’s estimated state and the reference trajectory, thus
ensuring precise trajectory tracking. The control action upk
is determined as part of the MPC optimization process.

2) DQN for Localization Decisions with Meta-Training:
Within the ComTraQ-MPC framework, DQN is employed
to optimize localization decisions under the constraints
of limited active localization updates. The introduction of
meta-training extends the capability of DQN to adapt across
a diverse set of trajectories, enhancing its generalizability.

The state for the DQN, s̄k, includes the agent’s average
belief about its physical state, s̄pk, the variance of this
belief, σspk , and the remaining active localization budget, slk.
The goal is to judiciously use active localization updates,
ulk ∈ {0, 1}, that balance the necessity of accessing the
agent’s true state against the cost of actively localizing.
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(a) Trajectory tracked by MPC with passive localization (b) Trajectory tracked by DQN

(c) Trajectory tracked by MPC with naive localization policy (d) Trajectory tracked by ComTraQ-MPC

Fig. 3: Comparison of trajectory tracking across scenarios. In each subfigure, the left image illustrates the trajectory in Scenario 1,
while the right image depicts Scenario 2. Key points are color-coded: green for the start, purple for the goal, yellow for active
localization updates. The reference trajectory is shown in red, and the trajectory produced by the evaluated approach is in blue.

Meta-training modifies the traditional DQN training
process by introducing a loss function that accounts for the
performance across multiple trajectories and budgets, aiming
to minimize the expected loss over a distribution of tasks:

L(θ)=ET ref∼T
Bc∼B

[
Es̄k,ul

k

[(
QT ref (s̄k,u

l
k|θ)−yT ref

)2]]
.

Here T denotes the distribution of trajectories, T ref a
specific trajectory from this distribution. Similarly, B and Bc

represent the distribution of active localization budgets and
specific budget from this distribution. The target yT ref is
defined as yT ref =rT ref +γmaxul

k+1
QT ref (s̄k+1,u

l
k+1|θ−),

with rT ref being the immediate reward under trajectory
T ref , budget Bl, and θ− representing the parameters of a
target network for stability.

This loss function ensures that the DQN learns a policy not
just for a single trajectory and active localization budget but is
robust across the variations encountered in different scenarios.

3) Interplay between DQN and MPC for a given reference
trajectory and active localization budget: The key component
of the ComTraQ-MPC framework is the interaction between
the two modules (DQN and MPC).

a) Influence of DQN on MPC: DQN determines the
optimal localization action ulk based on its state s̄k, which
influences the MPC’s belief state estimate and subsequent
control actions. The localization decision updates the state
estimate s̄pk+1 for MPC, as:

s̄pk+1=

{
sk+1 if ulk=1,

fp(s̄pk,u
p
k,wk) otherwise.

(4)

This decision directly impacts the MPC’s trajectory
optimization by modifying the certainty level of state
information – leading to adjustments in the control strategy
to solve the optimization problem given in (3).

b) Feedback from MPC to DQN: The deviation from
the desired trajectory, as determined by MPC, plays a crucial
role in refining the decision-making process of DQN. This
relationship is formalized through a feedback mechanism
where the performance of MPC provides a learning signal
rMPC to DQN. This signal quantifies the control efficacy of
MPC given the prevailing localization strategy:

rMPC=−α
k+H∑
i=k

∥s̄pi −s
ref
i ∥2, (5)

where α serves as a weighting parameter, modulating the
influence of trajectory adherence on the learning process.
This feedback incentivizes DQN to prioritize localization
decisions that contribute to minimizing trajectory deviations.

The dynamic exchange between DQN’s policy for
localization and the control outputs of MPC establishes a
feedback loop, crucial for the continual enhancement of the
ComTraQ-MPC framework’s adaptability and efficacy. The
augmented reward function for DQN is represented as:

rDQN =

{
rMPC−(1−α)∥spk−s̄

p
k∥, if 0≤slk≤Bl

Rmin, otherwise
(6)

where rMPC is the aggregated control performance and
rdeviation = (1 − α)∥spk − s̄pk∥ accounts for the deviation
between the actual state spk and the estimated state s̄pk. We
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only need access to true state data while training the DQN
and not during actual mission performance. Rmin is a large
negative reward for exceeding the active localization budget.

V. EXPERIMENTAL EVALUATION

This section evaluates the efficacy of the ComTraQ-MPC
framework through a comprehensive evaluation in the context
of autonomous ground vehicle trajectory tracking, where a
trajectory is defined as an ordered set of closely spaced way-
points. First, we describe the b-POMDP framework that mod-
els the system’s physical dynamics as given in [24] and the
localization update dynamics as described in Section III. Sub-
sequently, we compare ComTraQ-MPC’s performance against
established baselines. This comparison spans both simulated
environments and real-world hardware implementations.

Hardware experimentation is carried out utilizing a
TurtleBot Burger, designed to undertake the task of tracking
a pre-defined reference trajectory obtained using the advanced
navigation package within ROS. The TurtleBot is fitted with
an single-board computer and utilizes a LIDAR sensor for
SLAM [25]. We also leverage ROS to interface the sensor
with the onboard computer.

State: We model the agent as a b-POMDP with the state
at time k given by:

sk=

[
spk
slk

]
=

xk
yk
vk

ψk

bk




spk∈R4

slk∈N0

.

Here, spk describes the position ([xk,yk]), velocity (vk) and
orientation (ψk) of the agent and slk describes the remaining
budget for active localization (bk).

Actions: The dynamics of the agent are governed
through two distinct types of actions: physical action, upk,
and localization action, ulk. Specifically, upk encompasses
acceleration (a) and steering angle (δ), with the acceleration
bounded within [−0.2, 0.2] m/s2 and the steering angle
constrained to [−60◦,60◦].

Partial Observability of spk: The agent operates under
conditions of partial observability, receiving observations
of its physical state when it actively localizes. These
observations are derived from the agent’s interaction with a
SLAM-generated map, adhering to the observation function
outlined in (2).

Model Uncertainty: To emulate slip in wheels, we
implement an adversarial controller that modulates the wheel
torque [26]. Owing to this slip, the orientation of the agent
has an additional deviation (in degrees) w∼N (0,σ2) where
σ = 15◦. The effect of this slip combined with the partial
observability can be seen in Fig. 3(a) where we use an MPC
approach which assumes noiseless dynamics and relies only
on passive localization to track a trajectory.

Meta-Training of DQN: The meta-training procedure is
instrumental in ensuring that the DQN component acquires
a versatile and robust policy capable of adapting to a wide

range of reference trajectories and active localization budgets,
including those not encountered during the training phase.
This meta-training was conducted across a set of 100 feasible
randomly trajectory-budget pairs. The budget allocated was
proportional to the trajectory length.

A. Simulation and Hardware Results

Baselines: To evaluate the efficacy of our framework
comprehensively, we benchmark its performance against well-
defined baselines, each representing a distinct approach to the
problem of trajectory tracking and localization in stochastic,
partially observable conditions. The baselines include:

• MPC with passive localization: This explores the
performance of MPC in trajectory tracking without
the benefit of active localization updates. It serves to
highlight the impact of active localization on tracking
accuracy and the inherent limitations when operating
solely based on initial state information.

• Learning-based strategies: This baseline employs
vanilla DQN to manage both trajectory tracking and
localization decisions. It showcases the capabilities
of a purely reinforcement learning-based approach in
navigating the complexities of the task without the
predictive advantage of MPC.

• MPC with naive localization policy: Contrasting with
the adaptive localization strategy of ComTraQ-MPC,
this baseline implements MPC with a naive localization
policy, where active localization occurs at predefined,
regular intervals—testing the effectiveness of periodic
updates versus the dynamic decision-making process
of ComTraQ-MPC.

Scenarios: Our empirical analysis comprises experiments
conducted in two distinct trajectory-budget pairs to assess
the adaptability and performance of the ComTraQ-MPC
framework. The first pair is one that the agent has previously
encountered during its meta-training phase (refer to Fig.
1(a)), while the second represents an unseen trajectory,
unexperienced by the agent prior to testing (see Fig. 1(b)).

Scenario 1 – Previously Encountered Trajectory: This
scenario evaluates ComTraQ-MPC’s performance on a
trajectory that is a part of its meta-training dataset. The
familiarity of the trajectory and active localization budget
allows us to examine the efficiency of the learned localization
and navigation strategies under conditions that the system
is optimally prepared for. The trajectory is relatively a
short one with 135 waypoints and the agent has an active
localization budget of 10 for tracking it.

Scenario 2 – Unencountered Trajectory: Contrasting with
Scenario 1, this experiment presents the agent with an
entirely unseen trajectory-budget pair, not included in the
meta-training process. This scenario serves to test the
generalizability of ComTraQ-MPC, probing its capacity to
apply learned policies to new conditions using the previously
meta-trained model. The unencountered trajectory is longer
in length, comprising of 245 points and a higher active
localization budget of 20.
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Fig. 4: Integrated Analysis of ComTraQ-MPC in Scenario 2. (a) t-SNE visualization of Q-values, highlighting the distinct
clusters corresponding to Phase 1 (blue), Phase 2 (green), and Phase 3 (yellow) of the mission, with active localization
updates denoted by red circles. (b) Variation of error between the average belief state and the true state, with active
localization updates superimposed, corresponding to the color-coded mission phases in (a). (c) Path comparison illustrating
the reference path and the ComTraQ-MPC path with active localization updates marked, mirroring the sequence of the
mission phases as color-coded in (a) and (b).

Scenario 1
Path length: 135, Bl :10

Scenario 2
Path length: 245, Bl :20

# waypoints followed MAE Goal reached # waypoints followed MAE Goal reached
MPC with passive localization 23 2.748 no 9 1.485 no

DQN 28 0.990 no 26 2.341 no
MPC with naive localization policy 51 0.904 no 119 0.131 yes

ComTraQ-MPC 105 0.276 yes 242 0.030 yes

TABLE I: Comparative Analysis of Navigation Performance: This table compares the number of waypoints followed (within
a radius of 0.1m), mean absolute error (MAE), and whether the goal was reached or not. Successful goal attainment is
defined as the TurtleBot arriving within a 0.1m radius of the target.

B. Discussions

Our experiments reveal the inadequacies of conventional
methods in navigation tasks under partial observability and
active localization limits, highlighted by the failure of the
passively localized MPC (Fig. 3(a)). The DQN strategy, even
after extensive training, often neglects the strategic value
of active localization (Fig. 3(b)), likely due to an expansive
action space that combines motion and localization actions.

Fig. 3(c) depicts the failure of the naive MPC strategy,
which uses uniformly spaced active localization intervals
determined by dividing the trajectory length by the active
localization budget. This underscores the necessity for a
dynamic approach to active localization update, capable of
responding to the path’s evolving challenges.

Table I compares the number of waypoints followed in both
the scenarios when different approaches are used. As can be

observed (see Fig. 3(d)) ComTraQ-MPC not only follows the
maximum number of waypoints but also does so with the least
trajectory tracking error (MAE). The performance disparity of
all the approaches (except DQN) across scenarios can be at-
tributed to the magnified effect of slip on the shorter trajectory
in Scenario 1. The anamolous performance of DQN might be
due to the smaller training state space in Scenario 1 in com-
parison to Scenario 2. Finally, our framework’s performance
on Scenario 2 underscores its adaptability to unseen scenarios.

1) Analysis of ComTraQ-MPC on Previously Unseen
Trajectory-Budget Pairs: In Scenario 2, which presents
a trajectory-budget pair not encountered during the meta-
training phase, ComTraQ-MPC demonstrates its robustness
and adaptability by achieving optimal trajectory tracking,
significantly surpassing baseline methods as illustrated in
Scenario 2 of Fig. 3(d).
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Fig. 4 provides an analysis into the decision-making
process of ComTraQ-MPC in this scenario. We split the
trajectory into 3 major phases, Phase 1 (from start point
to the second major turn of the trajectory), Phase 2 (from
second major turn to final turn) and Phase 3 (from final turn
to goal). It reveals that ComTraQ-MPC adopts an adaptive
localization strategy that intelligently modulates based on
the mission’s phase. Specifically, in Phase 1 of Scenario 2,
characterized by sharper turns, ComTraQ-MPC strategically
increases active localization updates between the first and
second major turns of the trajectory.

Conversely, during Phase 2, where the trajectory is less com-
plex as compared to Phase 1, the number of active localization
updates significantly reduces. This reduction is predicated on
the agent’s assessment that fewer active updates are necessary
for successful navigation as it approaches the final phase.
Finally in Phase 3, where the goal proximity becomes more
apparent, ComTraQ-MPC chooses not to actively localize.

This nuanced approach to localization can also be
visualized in the t-SNE [27] analysis of Q-values in Fig. 4a.
The clustering of Q-values indicates distinct decision-making
patterns: states in Phase 1 are grouped together (bottom left,
marked by a blue circle), suggesting a higher propensity
for active localization; Phase 2 exhibits a different pattern
(top, marked by a green circle), and Phase 3 is distinctly
clustered (right, marked by a yellow circle), reflecting the
strategic reduction in active localization updates.

VI. CONCLUSIONS

This paper introduced ComTraQ-MPC, a novel framework
that integrates Deep Q-Networks (DQN) with Model
Predictive Control (MPC) to address the intricate challenge
of trajectory tracking in partially observable, stochastic
environments constrained by limited active localization
updates. Our approach uniquely combines the adaptive
decision-making prowess of DQN, enhanced through
meta-training across diverse trajectory-budget pairs, with
the precision and foresight of MPC for effective trajectory
planning and execution. The empirical evaluations conducted
in both previously seen and unseen scenarios demonstrate
the superior performance of ComTraQ-MPC over traditional
methods. By optimizing the use of the limited active local-
ization updates and efficiently tracking reference trajectories,
our framework not only achieves significant improvements
in operational efficiency and accuracy but also exhibits
remarkable adaptability to a wide range of scenarios. Future
work will focus on extending the framework’s capabilities
to more complex multi-agent scenarios to deal with active
localization along with communication amongst the agents.
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