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Abstract

Monotonic Partially Observable Markov Decision Processes
(POMDPs), where the system state progressively decreases
until a restorative action is performed, can be used to model
sequential repair problems effectively. This paper considers
the problem of solving budget-constrained multi-component
monotonic POMDPs, where a finite budget limits the max-
imal number of restorative actions. For a large number of
components, solving such a POMDP using current methods
is computationally intractable due to the exponential growth
in the state space with an increasing number of components.
To address this challenge, we propose a two-step approach.
Since the individual components of a budget-constrained
multi-component monotonic POMDP are only connected via
the shared budget, we first approximate the optimal budget
allocation among these components using an approximation
of each component POMDP’s optimal value function which
is obtained through a random forest model. Subsequently, we
introduce an oracle-guided meta-trained Proximal Policy Op-
timization (PPO) algorithm to solve each of the independent
budget-constrained single-component monotonic POMDPs.
The oracle policy is obtained by performing value iteration
on the corresponding monotonic Markov Decision Process
(MDP). This two-step method provides scalability in solv-
ing truly massive multi-component monotonic POMDPs. To
demonstrate the efficacy of our approach, we consider a real-
world maintenance scenario that involves inspection and re-
pair of an administrative building by a team of agents within
a maintenance budget. Our results show that the proposed
method significantly improves average component survival
times compared to baseline policies, thereby highlighting its
potential for practical applications in large-scale maintenance
problems. Finally, we perform a computational complexity
analysis for a varying number of components to show the
scalability of the proposed approach.

1 Introduction
Partially Observable Markov Decision Processes (POMDPs)
provide an efficient framework for modeling a wide range
of real-world sequential decision-making problems (Cas-
sandra 1998; Bravo, Leiras, and Cyrino Oliveira 2019).
Numerous methods have been developed to compute opti-
mal policies for POMDPs, including Monte-Carlo methods
(Katt, Oliehoek, and Amato 2017), reinforcement learning
approaches (Singh et al. 2021), and various approximation
techniques (Kearns, Mansour, and Ng 1999). One notable

Figure 1: Condition of infrastructure component over time.
(a) Line plot showing component condition over time for
100 runs. The red x marks denote the time step when condi-
tion reaches 0. (b) Violin-plot showing distribution of com-
ponent condition for different time steps.

application of POMDPs is in infrastructure maintenance or
sequential repair problems, where the system state repre-
sents the condition of infrastructure components, which is
only partially observable (Bhattacharya et al. 2021). Over
time, the state of these components stochastically deterio-
rates unless a restorative action, such as a repair, is per-
formed. Figure 1 shows this stochastic decrease and also
shows the probability distribution of the condition of a sam-
ple infrastructure component for different time steps. The
state evolution of the POMDP, thus, exhibits monotonic
properties (Miehling and Teneketzis 2020) and we define
such POMDPs as monotonic POMDPs. Previously, Bhat-
tacharya et al. (2020) proposed an optimal inspection and
repair scheduling policy for a pipeline, which is a single-
component POMDP. However, infrastructure systems natu-
rally have multiple components (Daulat et al. 2024).

In this paper, we address the challenge of computing ap-
proximately optimal policies for budget-constrained multi-
component monotonic POMDPs. Each component POMDP
operates independently in terms of transition probabilities,
but they are collectively constrained by the shared budget.
There has been substantial work on solving budget con-
strained POMDPs (Lee et al. 2018; Undurti and How 2010;
Khonji, Jasour, and Williams 2019). However, the complex-
ity of these algorithms is often exponential in the number
of states of the POMDP, and consequently would be expo-
nential in the number of components for a multi-component
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POMDP. Thus, they become computationally intractable for
multi-component POMDPs with a large number of compo-
nents. In Vora et al. (2023), the authors propose a welfare-
maximization method for solving budget-constrained multi-
component POMDPs. However, the method in that paper re-
quires generating optimal policies for multiple budget values
for every component POMDP to get the optimal budget allo-
cation, i.e., optimal distribution of the shared budget among
the components POMDPs. Hence, it cannot be scaled to a
large number of components.

To address this scalability issue, we propose a compu-
tationally efficient meta-reinforcement learning approach
for solving budget-constrained multi-component monotonic
POMDPs. First, we approximate the optimal distribution of
budget among the individual component POMDPs using a
random forest budget allocation strategy, thereby decoupling
the problem into independent components. The random for-
est model is trained to approximate the value function of
a component POMDP as a function of the budget, leverag-
ing the concavity of the value function to frame the budget
allocation as a concave maximization problem, which guar-
antees a computationally feasible solution. Subsequently, we
apply the oracle policy-guided meta-trained Proximal Policy
Optimization (PPO) algorithm, trained across various com-
ponents and budget values, to compute the approximately
optimal policy for each component-budget pair. The ora-
cle policy for the meta-PPO is derived from value itera-
tion applied to the corresponding component MDP. To val-
idate the efficacy of our proposed approach, we examine
a maintenance scenario involving an administrative build-
ing with 1000 infrastructure components and a fixed main-
tenance budget. We compare the performance of our ap-
proach, in terms of the survival time of the components,
against the oracle policy, a currently-used baseline policy,
and a vanilla meta-PPO algorithm. We also perform a com-
putational complexity analysis of our algorithm for varying
number of components and show that the proposed approach
is linear in the number of components.

In summary, the key contributions of this paper are:
1. We develop an oracle policy-guided meta-PPO algorithm

for solving budget-constrained single-component mono-
tonic POMDPs.

2. We introduce a random forest budget allocation strategy
for optimally distributing the budget among the compo-
nent POMDPs of a budget-constrained multi-component
POMDP.

3. We demonstrate the efficacy of our approach through
a large-scale real-world infrastructure maintenance sce-
nario with 1000 infrastructure components.

4. We show the scalability of our algorithm through a com-
putational complexity analysis for varying number of
components.

2 Preliminaries and Related Work
2.1 Partially Observable Markov Decision

Processes
A discrete-time finite-horizon Partially Observable
Markov Decision Process (POMDP) (Cassandra, Kael-

bling, and Littman 1994) M is defined by the 7-tuple
(S, A, T,Ω, O,R,H), which denotes the state space,
action space, state transition function, observation space,
observation function, reward function and planning horizon,
respectively. In a POMDP, the agent does not have direct
access to the true state of the environment. Instead, the
agent may maintain a belief state, representing a probability
distribution over S. This belief is updated based on the
received observation using Bayes’ rule (Araya et al. 2010).

2.2 POMDP Solution Methods
Computing optimal policies for a POMDP is generally
PSPACE-complete (Mundhenk et al. 2000; Vlassis, Littman,
and Barber 2012). Thus, to address the computational in-
tractability of solving POMDPs, various approximation
methods have been widely used (Poupart and Boutilier 2002;
Pineau et al. 2003; Roy, Gordon, and Thrun 2005). Sev-
eral reinforcement learning approaches have also been de-
veloped for computing approximate POMDP solutions (Az-
izzadenesheli, Lazaric, and Anandkumar 2016; Igl et al.
2018). However these methods become computationally
intractable when faced with the high dimensionality and
shared resource constraints of budget-constrained multi-
component monotonic POMDPs such as those considered
in this paper.

2.3 Consumption MDPs and Budgeted POMDPs
The integration of budget or resource constraints into
Markov Decision Processes (MDPs) has been previously
studied under the frameworks of Consumption MDPs (Bla-
houdek et al. 2020) and Budgeted POMDPs (Vora et al.
2023). However, the algorithm proposed in Blahoudek et al.
(2020) assumes full observability of the state and hence
cannot be applied to budget-constrained POMDPs. A so-
lution for budget-constrained multi-component POMDPs is
presented in Vora et al. (2023). However, the method in
this paper requires repeated computations of optimal poli-
cies for different budget values for all component POMDPs
and hence is not scalable to a budget-constrained multi-
component POMDP with a large number of components.

3 Problem Formulation
In this paper, we consider a weakly-coupled multi-
component monotonic POMDP with a total budget. A
weakly-coupled multi-component POMDP refers to a sys-
tem where the individual component POMDPs have in-
dependent transition probabilities but are interconnected
through a shared budget B. This shared budget introduces
a weak coupling between the components, as the alloca-
tion of budget to one component affects the available bud-
get for the others. The state space for an n-component
monotonic budget-constrained POMDP is given by S =∏n

i=1 Si, where Si represents the state space for compo-
nent i, and i ∈ {1, . . . , n}. The action space is given by
A =

∏n
i=1 Ai, where the action space for component i is

Ai = {di, qi,mi}. Each action incurs a fixed cost. The state
at time instant k is an n-tuple, sk = (s1k, s

2
k, · · · , snk ), where

sik ∈ Si = {0, 1, . . . , s̄} denotes the state of component i,



Figure 2: Architectural overview of the proposed approach.

and s̄ ∈ N0 is the maximum possible value of sik. Here, N0

denotes the set of non-negative integers. Similarly, the action
at time k is given by ak = (a1k, a

2
k, · · · , ank ) and the cost as-

sociated with this action is given by cak
=
∑n

i=1 cai
k
, where

cai
k

represents the cost associated with each action aik. The
transition function for the multi-component POMDP is:

T (sk, ak, sk+1) =

n∏
i=1

Ti(s
i
k, a

i
k, s

i
k+1).

The transition probability function for each component i is:

T i(sik, a
i
k, s

i
k+1) =



pi1(s
i
k, a

i
k, s

i
k+1), if aik = mi and

sik ≤ sik+1 ≤ s̄,

pi2(s
i
k, a

i
k, s

i
k+1), if aik ∈ {di, qi}

and sik+1 ≤ sik,

1, if aik ∈ Ai and
sik+1 = 0 = sik,

0, otherwise.

Here, action mi is a restorative action that increases the state
value, with the increase being upper bounded by s̄. In con-
trast, actions di and qi decrease the state value. Moreover,
sik = 0 is an absorbing state for all k, i. Finally, the obser-
vation probability function for each component follows the
model from Vora et al. (2023), where action qi gives true
state information and the other two actions provide no infor-
mation about the true state.

3.1 Problem Statement
The primary objective of this paper is to determine a pol-
icy π∗ for this multi-component monotonic POMDP over a
horizon H , that maximizes the sum of expectations of the in-
dividual times before reaching the absorbing state for each
component, while adhering to the total budget B. We denote
this maximal time k by Tmax =

∑n
i=1 T

i
max, where T i

max
denotes the corresponding maximal time for component i.
Mathematically, the problem can be formulated as:

max
π

(
n∑

i=1

E[T i
max(π)]

)

s.t.
H∑

k=0

cak
(π) ≤ B.

(1)

In this formulation, π represents the policy, and both T i
max

and cak
depend on π. For simplicity, we will not explicitly

denote this dependence in the remainder of this paper. There
are many other possible formulations of the objective of the
problem statement like a maxmin formulation:

max
π

min
i

E[T i
max(π)]. (2)

In this paper we consider the formulation given by (1).

4 Solution Approach
In this section, we present our methodology for solving
a budget-constrained multi-component monotonic POMDP.
Figure 2 presents an architectural overview of our proposed
approach. We first input information about all n component
POMDPs into a pre-trained random forest regressor to get
the T i

max for each component i as a function of the bud-
get allocated to the component. Next, we propose an appro-
priate allocation of the shared budget B among the compo-
nent POMDPs by solving a constrained maximization prob-
lem. We then compute the oracle policy for each component
POMDP and budget pair through value iteration applied to
the corresponding component MDP. Finally, using these or-
acle policies and a meta-trained reinforcement learning (RL)
agent, we solve each component POMDP with respect to the
allocated budget and consequently propose a policy for the
multi-component POMDP. Note that an alternate allocation
strategy could involve redistributing the budget at every time
step during planning. However, such a method would be
computationally more expensive, due to the repeated com-
putation of the allocation, as compared to our proposed a
priori budget distribution approach.

4.1 Oracle-Guided RL for Budget-Constrained
Monotonic POMDPs

To derive the optimal policy for a budget-constrained
single-component monotonic POMDP, we propose an ora-
cle policy-guided reinforcement learning algorithm. Adher-
ence to the budget constraints is achieved using the budget-
constrained POMDP (bPOMDP) framework proposed in
Vora et al. (2023). In a bPOMDP, the state at each time
step includes an additional fully observable component rep-
resenting the cost incurred up to that point.

The oracle policy is denoted as πoracle and is obtained
by solving the corresponding MDP using value iteration.



For a single-component monotonic POMDP with budget
B, the corresponding MDP has an action space AMDP =
{d,m}, identical transition probabilities as the POMDP, and
full observability of the state. We use the Proximal Pol-
icy Optimization (PPO) algorithm (Schulman et al. 2017)
in conjunction with the oracle policy to solve the single-
component budget-constrained POMDP. Doing so allows us
to treat the problem as that of determining the optimal in-
spection policy. At each time step, the PPO agent decides
whether to perform inspection or not. If the agent decides to
take the inspection action, it receives accurate information
about the true state of the POMDP. On the other hand, if the
agent decides not to inspect, then the action is chosen ac-
cording to the oracle policy. Hence, the action space for the
PPO agent is reduced to {q,¬q}. Since the full state is not
observable in a POMDP, we utilize the belief bs for plan-
ning. The agent’s belief of the true state is updated at each
time step using a particle filter approach. For our work, we
empirically observe that using the expected belief b̄s and the
variance of the belief σ2

bs
suffices for planning.

Hence, for the proposed oracle policy-guided PPO
agent, the state at time instant k is given by the vector
[b̄sk , ck, σ

2
bsk

]. Furthermore, the reward function is defined
as follows:

R(sk, ck, ak) =


r1 < 0, if ck > B,

r2 < 0, if
⌊
b̄sk
⌋
= 0,

r3 = k
H − α|b̄sk − sk|, if b̄sk , ck > 0,

where |r1| > |r2| > |r3| for all k, 0 < α < 1 and ⌊.⌋ denotes
the floor function. This reward function imposes substantial
negative rewards for exceeding the budget B and allowing
the state sk to reach 0. Additionally, at each time step, the
agent receives a positive reward proportional to the time step
for maintaining sk above zero and incurs a penalty propor-
tional to the absolute error between the expected belief and
the true state. As a result, the agent gets higher rewards for
keeping sk > 0 for a longer time and is heavily penalized
when the expected belief deviates significantly from the true
state. It is crucial to note that during training, the agent relies
solely on the observed reward signals, without access to the
true state.

4.2 Random Forest Approach for Optimal
Budget Allocation

In the previous subsection, we detailed the methodology for
deriving the optimal policy for a single-component budget-
constrained monotonic POMDP. We now extend this to an
n-component POMDP described in Section 3. Each com-
ponent in this multi-component POMDP operates indepen-
dently in terms of transition probabilities, but they share
a common total budget, rendering them weakly coupled.
While reinforcement learning algorithms have made signif-
icant advances, they often face challenges when scaling to
the extremely large state and action spaces characteristic of
multi-component systems (Sutton and Barto 2018). In the
case of a budget-constrained n-component POMDP, directly
applying a single-component solution approach would re-
sult in an exponentially large state space and action space,

making such an approach impractical for large-scale prob-
lems. To address this scalability issue, we propose an a pri-
ori budget distribution strategy to decouple the components,
thereby reducing the size of the state and action spaces.
Under certain assumptions, the expected maximal time to
reach the absorbing state, E[Tmax], for a budget-constrained
single-component monotonic POMDP, is concave with re-
spect to the allocated budget b (Vora et al. 2023). For a given
component i and allocated budget bi, let T̃ i

max be the approx-
imate expected maximal time as a function of the budget,
modeled using an exponential function:

T̃ i
max = αieβ

ibi + γi, (3)

where αi, βi, γi ∈ R are constants. While many other con-
cave functions could be used to model T̃ i

max, we empiri-
cally observe that the exponential function provides a good
fit for the data. We use a random forest regressor (Breiman
2001) to estimate the parameters of this exponential func-
tion. The training dataset for this model is obtained via non-
linear least squares regression on multiple (E[Tmax], b) pairs
for various budget-constrained single-component monotonic
POMDPs. The input to this model includes specific statistics
related to the POMDP’s transition function, which are the
expected time to reach state 0 without repairs, E[T ], and the
variance of this expected time, σ2

E[T ], as well as the cost of
the various actions.

For an n-component POMDP with total budget B, let the
budget allocated to the i-th component be bi, and the approx-
imate expected maximal time to reach the absorbing state for
this budget be T̃ i

max. We then formulate the following con-
strained maximization problem:

max
bi

n∑
i=1

T̃ i
max

s.t.
n∑

i=1

bi ≤ B.

(4)

Solving (4) yields the approximately optimal budget allo-
cation among the individual components. Since we assume
T̃ i
max to be concave in bi, the optimization problem becomes

a concave maximization problem and is thus guaranteed to
have a computationally tractable solution.

4.3 Optimal Policy for Multi-Component
Monotonic POMDPs

We now integrate the approaches described in the previ-
ous subsections to compute the optimal policy for an n-
component POMDP, where n is substantially large. Utilizing
the random forest regressor from Section 4.2, we efficiently
approximate E[Tmax] for each component i. Additionally,
we meta-train the oracle-guided PPO agent by constantly
updating the policy network’s parameters over a randomly
selectied a subset of components and budget values. This
approach allows the agent to generalize across components.
This meta-trained agent is then utilized to derive the optimal
policy πi∗ for each component i, following the optimal bud-
get allocation obtained from (4). Consequently, the overall



Figure 3: Performance comparison of oracle policy, oracle-guided meta-PPO, realistic baseline and vanilla meta-PPO. (a) Com-
parison of T̂max values for all 1000 components across different budget values allocated to each component. (b) Comparison of
average number of repairs performed by the agent under each of the four policies. (c) Comparison of average total cost incurred
by the agent over the planning horizon for each of the four policies.

policy for the multi-component POMDP is:

π∗(sk, ak) = (π1∗(s1k, a
1
k), π

2∗(s2k, a
2
k), · · · , πn∗

(snk , a
n
k )).

While this policy is not guaranteed to be globally optimal
for the entire multi-component POMDP, we empirically ob-
serve that it performs well in practice while respecting the
budget constraints. We validate this approach by evaluating
its performance on real-world data in the subsequent section.

5 Implementation and Evaluation
In this section, we evaluate the efficacy of the proposed
methodology for determining the optimal policy for a very
large multi-component budget-constrained POMDP. Specif-
ically, we compare our approach against existing methods in
the context of a multi-component building maintenance sce-
nario managed by a team of agents. We also perform a com-
putational complexity analysis of the proposed approach, for
varying number of components.

We consider an administrative building comprising 1000
infrastructure components, including roofing elements, wa-
ter fountains, lighting systems, and boilers. Each compo-
nent’s health is quantified by the Condition Index (CI)
(Grussing, Uzarski, and Marrano 2006), which ranges from
0 to 100. For each infrastructure component, we utilize his-
torical CI data to generate the transition probabilities for
the corresponding POMDP, modeled using the Weibull dis-
tribution (Grussing, Uzarski, and Marrano 2006). We use
the weibull min class from the scipy.stats module
in Python to simulate the CI transitions over time. While
a seed can be set using the random state parameter in
weibull min for reproducibility, we did not set one to
preserve the stochastic nature of the CI transitions. The
condition index deteriorates stochastically over time, influ-
enced by various factors, and can only be accurately as-
sessed through explicit inspections, which incur a cost. A
component is considered to have failed when its CI falls be-
low a failure threshold, which is assumed to be 0. Compo-
nents can be repaired to increase their CI. The building is
allocated a maintenance budget of B = 500,000 units for a

given horizon of 100 decision steps. At the beginning of the
horizon, the CI of all components is 100. The objective of
the agents is to maximize the time until failure of the com-
ponents by efficiently allocating the budget among the com-
ponents and performing repairs and inspections as needed.
The replacement costs (ranging from 50 to 500 units) and
inspection costs (ranging from 1 to 5 units) of these com-
ponents are derived from industry averages. Consistent with
the approach described in Section 4.1, we model this objec-
tive as a POMDP (with α = 10−3 in the reward function).
This POMDP has roughly 102000 states and 31000 actions.

5.1 Analysis of Maintenance Policy
We begin by analyzing the performance of the mainte-
nance policy derived using the proposed oracle-guided meta-
PPO strategy for a single-component POMDP representing
a component i of the 1000 components. This policy is com-
pared with the performance of the oracle policy on the corre-
sponding component MDP. Since the oracle policy has full
observability of the state, it is expected to always perform
better than the proposed approach. Additionally, we evalu-
ate two baseline policies:
1. A heuristic policy often used in practice (Lam and Yeh

1994; Straub 2004) where the agent performs inspections
at regular intervals and repairs the component when its
expected belief about the Condition Index (CI) falls be-
low a predefined threshold. We chose an inspection inter-
val of 5 steps and a repair threshold of 15 after extensive
experiments with intervals ranging from 1 to 10 steps and
repair thresholds from 5 to 50.

2. A vanilla meta-PPO agent that is trained on the same
subset of component-budget pairs as the oracle-guided
agent, but without an oracle policy.

Both the oracle-guided meta-PPO and vanilla meta-PPO
are trained for 2M time steps each, with an Adam step-
size of 10−4, a minibatch size 128, policy update horizon of
T = 4096 and discount factor 0.95. All other hyperparam-
eters follow those used in Schulman et al. (2017). We per-
form 100 simulations for this component to obtain the corre-



sponding T i
max values, which are then averaged over the runs

for a given budget value allocated to the component. This
process is repeated for all 1000 components and the run-
averaged T i

max values are then averaged across components.
We compare this average denoted by T̂max for 11 different
budget values ranging from 0 to 5000 units, along with the
average number of repairs performed by the agent and the
average cost incurred over the planning horizon. Figure 3 il-
lustrates a comparison of these metrics for all four policies.
We observe that the proposed approach significantly out-
performs the baselines. The oracle-guided meta-PPO agent
nearly matches the performance of the oracle policy for all 3
metrics, presumably due to the low inspection costs of the
components. If inspection costs were significantly higher,
the agent’s performance would likely diverge from the or-
acle policy, which is an expected outcome given the budget
constraints. We also infer that the vanilla meta-PPO agent
has only learnt to not violate the budget constraint by not
performing any repairs. These results demonstrate the value
of incorporating an oracle policy into the training of a rein-
forcement learning agent.

5.2 Analysis of Budget Allocation
Next, we demonstrate the effectiveness of our random
forest-based budget allocation strategy. We compare it with
a baseline approach that allocates budgets proportional to
the ratio of a component’s replacement cost to its E[T ]. For
a component i, we model its E[T i

max] using T̃ i
max as given in

(3). The parameters αi and γi can be estimated directly by
considering the boundary conditions: γi is estimated by sub-
stituting bi = 0, representing the scenario where no budget
is available, and αi is determined by substituting bi = ∞,
corresponding to the scenario of unlimited budget, where the
supremum of T i

max (supbi T
i
max = H = 100) is reached.

We then train a random forest regressor to estimate param-
eter βi. The training dataset is created by performing non-
linear least squares regression on 11 distinct (T i

max, b
i) pairs

each for 800 components. These pairs correspond to the run-
averaged T i

max values and the respective budget values bi

from Section 5.1. The input to the random forest model is
a vector consisting of the shape and scale factors of the
Weibull distribution, which represent E[T ] and σ2

E[T ], along
with the replacement and inspection costs for a given com-
ponent i. If a different distribution were used to model the
transition probability, we would similarly extract the param-
eters, E[T ] and σ2

E[T ], for inclusion in the input vector.
Figure 4 shows the prediction performance of the ran-

dom forest model for a test dataset of 200 components
which were not encountered during training. We see that
most points on the plot are very close to the perfect predic-
tion line and bad predictions are few in number (29 out of
200 for error threshold of 10−4). The random forest model
achieves a mean squared error (MSE) = 1.8× 10−8 for this
test dataset. Note that the non-linear least squares regressor
constrains βi to be ≤ 0 and hence for some components
we observe that βi = 0. We use this trained random for-
est model to estimate T̃ i

max for all 1000 components. Fi-
nally, using these approximated expressions, we solve the

Figure 4: Performance of random forest model for predict-
ing the value of parameter β for a test dataset of 200 compo-
nents. The horizontal axis represents parameter values ob-
tained via non-linear least squares and vertical axis repre-
sents predicted values. The dotted line represents the y = x
line, i.e., perfect predictions.

constrained maximization problem described in (4) to ob-
tain the appropriate budget allocation for the components.
We quantify the performance of the random forest budget

Approach Tmax

Random Forest Budget Allocation 22,009.5
Baseline Budget Allocation 16,445.4

Table 1: Tmax (in steps), averaged over 100 runs, achieved
under random forest and baseline budget allocations.

Figure 5: Performance comparison of random forest-based
budget allocation and baseline budget allocation for all 1000
components for an overall budget of 500,000 units.

allocation and the baseline budget allocation algorithms by
calculating the Tmax =

∑
i T

i
max and averaging it over 100

runs. For a fair comparison, these values are obtained us-
ing the oracle-guided meta-PPO approach for both alloca-
tion schemes. Table 1 shows the Tmax values achieved by
both allocation approaches. The random forest budget al-
location vastly outperforms the baseline approach. Further-
more, Figure 5 presents violin plots showing the distribution
of the T i

max values achieved under the proposed and baseline



Number of Components Random Forest Budget Split Value Iteration Meta-PPO
1 0.9724 0.9046 113.7227 2.8885
2 0.8870 0.8314 116.3281 3.0858
5 0.8719 0.8207 135.3953 4.7940

10 0.8762 0.8132 280.4909 9.5495
20 0.9534 0.8997 451.2948 16.2575
50 0.9449 0.8916 1208.1000 33.7387

100 0.9324 0.9171 2389.5641 64.6809
500 0.9575 1.2226 10269.1037 313.9742
1000 0.9599 1.6232 20612.1734 627.7477

Table 2: Time taken (in seconds) for running each process with varying numbers of components, averaged over 10 runs.

budget allocations for all 1000 components. We observe that
there are more components with higher T i

max values for the
random forest budget allocation approach. Preliminary ex-
periments on alternative objective formulations, such as the
maxmin approach given by (2), also indicate that the pro-
posed method consistently outperforms the baseline.

5.3 Analysis of Time Complexity
Finally, we analyze the time complexity of our proposed ap-
proach for varying number of components N . As mentioned
earlier, our method comprises of four major steps:

1. Random Forest regression for estimating T̃ i
max for each

component i.
2. Budget Allocation among components via constrained

optimization.
3. MDP Value Iteration for each component-budget pair

to obtain the corresponding oracle policy.
4. Oracle-Guided Meta-PPO to approximately solve each

component POMDP.

Table 2 presents the times taken for running each of the four
processes, with different number of components. The time
complexity experiments were performed in Python on a lap-
top running MacOS with an M2 chip @3.49GHz CPU and
8GB RAM. The times taken for random forest and budget al-
location steps are negligible compared to those for perform-
ing value iteration and generating optimal policies through
meta-PPO. The value iteration is applied to each compo-
nent independently and hence scales linearly with the num-
ber of components. Similarly, Step 4 involves applying the
pre-trained policy to each component separately and thus is
also linear in the number of components. Consequently, we
expect that the time complexity of our algorithm is linear
in the number of components, i.e., O(n). This expectation
is confirmed by the log-log plot of computational complex-
ity shown in Figure 6. Our algorithm’s performance is thus
significantly faster as compared to existing POMDP solvers
which would be exponential in the number of states and thus
doubly exponential in the number of components (Silver and
Veness 2010), (Pineau et al. 2003). If the problem is ap-
proached directly as a single POMDP, it will have a pro-
hibitively vast state space of approximately 102000 states.
Previous work by Vora et al. (2023) demonstrated that stan-

dard methods indeed become computationally intractable af-
ter a few components due to this combinatorial explosion.

Figure 6: Log-log plot of computational complexity of the
proposed approach for varying numbers of components.

6 Conclusions
In this paper we introduce a framework to provide compu-
tationally efficient solutions, scalable for large scale budget-
constrained multi-component monotonic POMDPs. Noting
that the coupling is expressed solely through the shared bud-
get, our method functions by first decomposing the large n-
component POMDP into n independent single-component
POMDPs using a random forest budget allocation of the
shared budget. Next, we compute the oracle policy using
value iteration for each component POMDP and budget
pair. Finally, using this oracle policy together with a meta-
trained PPO agent, we solve each component POMDP. Con-
sequently, we obtain the approximately optimal policy for
the multi-component POMDP. The experimental evaluations
conducted for a real-world scenario of large scale infras-
tructure maintenance show that the proposed approach out-
performs existing baselines and almost matches the perfor-
mance of the oracle policy, which relies on information not
available to the planner in a partially observable setting. Fur-
thermore, computational complexity analysis demonstrates
the scalability of our framework. Future work will focus
on extending the framework’s capabilities to more dynamic
budget allocation schemes and more complicated hierarchi-
cal budget constraints.
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