
Capacity-Aware Planning and Scheduling in Budget-Constrained Monotonic
MDPs: A Meta-RL Approach

Manav Vora1, Ilan Shomorony2, Melkior Ornik1

1Department of Aerospace Engineering and Coordinated Science Laboratory, University of Illinois Urbana Champaign,
Urbana, USA

2Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, USA
mkvora2@illinois.edu, ilans@illinois.edu, mornik@illinois.edu

Abstract

Many real-world sequential repair problems can be effec-
tively modeled using monotonic Markov Decision Processes
(MDPs), where the system state stochastically decreases and
can only be increased by performing a restorative action.
This work addresses the problem of solving multi-component
monotonic MDPs with both budget and capacity constraints.
The budget constraint limits the total number of restora-
tive actions and the capacity constraint limits the number
of restorative actions that can be performed simultaneously.
While prior methods dealt with budget constraints, capacity
constraints introduce an additional complexity in the multi-
component action space that results in a combinatorial op-
timization problem. Including capacity constraints in prior
methods leads to an exponential increase in computational
complexity as the number of components in the MDP grows.
We propose a two-step planning approach to address this
challenge. First, we partition the components of the multi-
component MDP into groups, where the number of groups
is determined by the capacity constraint. We achieve this
partitioning by solving a Linear Sum Assignment Problem
(LSAP), which groups components to maximize the diversity
in the properties of their transition probabilities. Each group
is then allocated a fraction of the total budget proportional
to its size. This partitioning effectively decouples the large
multi-component MDP into smaller subproblems, which are
computationally feasible because the capacity constraint is
simplified and the budget constraint can be addressed us-
ing existing methods. Subsequently, we use a meta-trained
PPO agent to obtain an approximately optimal policy for each
group. To validate our approach, we apply it to the problem
of scheduling repairs for a large group of industrial robots,
constrained by a limited number of repair technicians and a
total repair budget. Our results demonstrate that the proposed
method outperforms baseline approaches in terms of maxi-
mizing the average uptime of the robot swarm, particularly
for large swarm sizes. Lastly, we confirm the scalability of
our approach through a computational complexity analysis
across varying numbers of robots and repair technicians.

1 Introduction
Markov Decision Processes (MDPs) provide an efficient
framework for modelling various real-world sequential deci-
sion making scenarios. One such scenario is that of sequen-
tial repair problems (Chen, Liu, and Xiahou 2021; Papakon-
stantinou and Shinozuka 2014), including in the context of

maintaining industrial robots (Borgi et al. 2017). With huge
technical advancements in the field of robotics, industrial
robots have become ubiquitous across manufacturing indus-
tries (Kibira and Qiao 2023). However, once deployed, the
robots undergo wear and tear which leads to performance
degradation over time (Qiao and Weiss 2018). This degra-
dation is often stochastic due to fluctuating workloads and
varying levels of wear, among other factors (Hung, Shen,
and Lee 2024; Chen, Liu, and Xiahou 2021). Hence the
problem of planning and scheduling maintenance of indus-
trial robots can be modeled as a monotonic MDP (Vora,
Grussing, and Ornik 2024), with the agent state modelling
the monotonically decreasing performance efficiency of the
robot. Restorative actions, such as repairs, can restore this
state to its maximum value.

In practice, manufacturing industries often have a limited
repair capacity (Perlman, Mehrez, and Kaspi 2001) while
also having multiple robots performing operations simulata-
neously (Hassan, Liu, and Paul 2018). In this paper we con-
sider the problem of obtaining planning and scheduling poli-
cies for budget- and capacity-constrained multi-component
monotonic MDPs. Each component in this context refers to
an individual system or machine, such as an industrial robot,
with its own independent transition probabilities. These
components are coupled due to the capacity constraints,
which limit the number of restorative actions that can be per-
formed simultaneously at any given time-step. In addition to
the capacity constraint, the system may also be constrained
by a shared total budget, which further complicates the opti-
mization process. This combination of constraints results in
a constrained combinatorial optimization problem, which is
generally NP-hard (Papadimitriou and Steiglitz 1998). Sev-
eral exact methods exist for solving constrained combina-
torial optimization problems, including dynamic program-
ming and branch-and-bound algorithms (Toth 2000). How-
ever, these methods scale poorly to large scenarios due to
the exponential growth in computational complexity (Ko-
rte et al. 2011). Furthermore, significant research has previ-
ously been done on solving budget-constrained MDPs (Wu
et al. 2018; Kalagarla, Jain, and Nuzzo 2021). However, the
complexity of these algorithms is generally exponential in
the number of states of the MDP and hence would be expo-
nential in the number of components for a multi-component
MDP, rendering them unsuitable for solving large multi-

ar
X

iv
:2

41
0.

21
24

9v
1

 [
cs

.L
G

]
 2

8
O

ct
 2

02
4

component MDPs. In Vora, Grussing, and Ornik (2024),
the authors propose an algorithm that scales linearly with
the number of components of a budget-constrained multi-
component POMDP. However, the algorithm involves com-
puting an a priori budget split among the individual com-
ponents. Introducing capacity constraints complicates this
process by introducing an additional coupling among the
component MDPs, making it difficult to perform the bud-
get allocation effectively. Hence, this algorithm cannot be
directly extended to solve budget and capacity-constrained
multi-component monotonic MDPs.

To address this added complexity introduced by
the capacity constraints, we propose a scalable meta-
reinforcement learning approach for solving budget and
capacity-constrained multi-component monotonic MDPs,
comprising two key steps. The first step involves decou-
pling the large multi-component MDP into smaller, compu-
tationally tractable subproblems by partitioning the compo-
nent MDPs into groups. The number of groups is determined
by the capacity constraints: specifically, if the capacity con-
straint is k, we partition the components into k groups. We
achieve this partitioning by formulating a Linear Sum As-
signment Problem (LSAP). The LSAP optimally assigns
components to groups to minimize a total cost. The cost ma-
trix for the LSAP is designed to maximize diversity within
each group in terms of the transition probabilities of the
member components. By ensuring that each group contains
components with varied behaviors, all groups exhibit similar
aggregate characteristics. This uniformity justifies allocating
the total budget proportionally among the groups based on
their sizes. In the second step, we obtain the approximately
optimal planning and scheduling policy for each group us-
ing a meta-PPO agent, trained on a diverse set of compo-
nent groups and budget values. This two-step approach not
only simplifies the capacity constraints by partitioning the
components into groups but also results in a more tractable
learning process by focusing on smaller MDPs with reduced
dimensionality, compared to a single large multi-component
MDP. Additionally, we perform a computational complex-
ity analysis to demonstrate the scalability of this approach
across varying number of components.

The key contributions of the paper are:

1. We introduce an LSAP-based partitioning method to
manage the capacity and budget constraints, decoupling
the large multi-component MDP into smaller MDPs.

2. We train a meta-PPO agent to obtain the planning and
scheduling policies for all partitions, each representing a
smaller budget-constrained multi-component MDP with
simplified capacity constraints.

3. We demonstrate the scalability and effectiveness of our
approach by applying it to a large-scale real-world sce-
nario of repair scheduling for a swarm of industrial
robots and performing a computational complexity anal-
ysis for varying numbers of components in the multi-
component MDP.

2 Preliminaries and Related Work
2.1 Multi-Component Markov Decision Processes
A discrete-time multi-component Markov Decision Process
(MDP) consists of multiple component MDPs with individ-
ual transition probabilities as well as state and action spaces.
It is defined by the 4-tuple (S, A, T, n). Here S denotes the
state space which is defined as S =

∏n
i=1 Si, and A rep-

resents the action space given by A =
∏n

i=1 A
i, where

Si and Ai denote the state and action space of component
i, respectively. Similarly, the transition probability function
T : S × A × S → [0, 1] is given by T =

∏n
i=1 T

i,
where T i is the transition function of component i and
T i : Si × Ai × Si → [0, 1]. Finally, n denotes the num-
ber of components in the multi-component MDP.

2.2 Budget-Constrained MDPs
Sequential decision-making problems with budget con-
straints are generally modeled using the Constrained MDP
(CMDP) framework (Altman 2021). In a CMDP, the agent
must optimize a reward function while adhering to a bud-
get constraint that limits the cumulative cost over a fixed
planning horizon. A lot of work has previously been done
on solving CMDPs (Borgi et al. 2017; Xiao et al. 2019).
However, CMDPs require traditional MDP descriptions and
hence do not scale well, with the number of components,
for large multi-component MDPs. Prior work by Boutilier
and Lu (2016) presents a scalable solution for large budget-
constrained multi-component MDPs, which involves effec-
tively decoupling the multi-component MDP by allocating
the shared budget among the individual component MDPs.
However, introducing capacity constraints will make this
budget allocation significantly more complex due to the
added combinatorial complexity. Hence, this method can-
not be directly extended to budget and capacity-constrained
MDPs.

2.3 Reinforcement Learning for MDPs
Reinforcement learning (RL) has been widely used to
solve MDPs (Sutton 2018; Schulman et al. 2017; Mnih
et al. 2015). RL has also been employed to solve budget-
constrained MDPs, where the goal is to learn policies that
adhere to a predefined budget (Wu et al. 2018; Carrara
et al. 2019). However, these methods tend to suffer from
poor scalability due to the high dimensionality introduced
by the shared resource and action constraints of a budget-
and capacity-constrained multi-component MDP.

2.4 Capacity-Constrained MDPs
Capacity constraints, where only a limited number of actions
can be performed simultaneously, introduce another layer of
complexity to MDPs. Previous work by Haksar and Schwa-
ger (2018) considers the problem of solving MDPs with
global capacity constraints and presents an approximate lin-
ear programming solution. While linear programs are indeed
efficient and can handle large-scale problems, the challenge
in our context arises from the combinatorial explosion of the
state and action spaces in budget- and capacity-constrained

multi-component MDPs. As the number of components in-
creases, the joint state and action space grow exponentially.
This exponential growth results in a linear programming
formulation with O(|Si|n|Ai|n) variables and constraints,
where |.| denotes the cardinality of a finite set. Even with ef-
ficient LP solvers, solving such a large LP becomes compu-
tationally infeasible for moderate to large values of n. There-
fore, the method proposed by Haksar and Schwager (2018)
cannot be directly extended to the large-scale problems con-
sidered in this paper.

3 Problem Formulation
In this paper, we consider a multi-component monotonic
MDP with budget and capacity constraints. Although the
individual components of a multi-component MDP are in-
dependent in terms of the transition probabilities, the bud-
get constraints introduce weak coupling among the compo-
nent MDPs. This is because any expenditure of the budget
by one component reduces the available budget for the re-
maining components. Furthermore, the capacity constraints
introduce an additional layer of coupling among the com-
ponents by restricting the number of restorative actions that
can be executed at a given time step. Together, these con-
straints transform the problem into a constrained combi-
natorial optimization problem. In this paper, we consider
a budget and capacity-constrained n-component monotonic
MDP with the state space for each component i being Si =
{0, 1, · · · , s̄}. Here, s̄ ∈ N0 denotes the maximum possi-
ble state value and N0 denotes the set of non-negative in-
tegers. Furthermore, Ai = {di,mi} is the action space for
component i. The total budget is B ∈ N0 and the capacity
constraint is given by r ∈ N0.

At time instant k, the system state is denoted by sk =
(s1k, s

2
k, · · · , snk),. Here, sik ∈ Si is the state of compo-

nent i at time k. The action at time k is given by ak =
(a1k, a

2
k, · · · , ank) with the cost associated with this action

being cak
=

∑n
i=1 cai

k
. Here, cai

k
represents the correspond-

ing cost of action aik. As mentioned in Section 2, the tran-
sition probability function for the multi-component MDP is
expressed as

T (sk, ak, sk+1) =
n∏

i=1

T i(sik, a
i
k, s

i
k+1).

For our case, performing action dik leads to a decrease in the
state value and costs nothing, i.e., cdi

k
= 0 for all i, k. On the

other hand, action mi
k increases the state, with the maximum

value bounded by s̄ and has a non-zero cost cmi
k
> 0. Addi-

tionally, for all k and i, the state sik = 0 is an absorbing state.
Thus, the component-wise transition function T i follows the
formulation from Vora, Grussing, and Ornik (2024):

T i(sik, a
i
k, s

i
k+1) =



pi1(s
i
k, a

i
k, s

i
k+1), if aik = mi and

0 < sik ≤ sik+1,

pi2(s
i
k, a

i
k, s

i
k+1), if aik = di

and sik+1 ≤ sik,

1, if sik+1 = 0 = sik,

0, otherwise.

3.1 Problem Statement
The main goal of this paper is to solve this budget and
capacity-constrained multi-component monotonic MDP by
finding a policy π that maximizes the minimum expected
time for any component to reach the absorbing state, while
satisfying the budget and capacity constraints. For each
component i, the time to reach the absorbing state sik = 0 is
denoted by tiabs. Mathematically, we are attempting to solve:

max
π

min
i

E[tiabs(π)]

s.t.
∞∑
k=0

cak
(π) ≤ B,

n∑
i=1

1(aik(π)) ≤ r, ∀k.

(1)

In (1), 1 represents the indicator function which has a value
of 1 when aik(π) = mi and 0 otherwise. Furthermore,
tiabs, cak

and aik are all functions of the policy π. For sim-
plicity, we will omit this dependence on π in the rest of the
paper. Note that we consider an infinite planning horizon in
(1). This is because, given a budget constraint, the length
of the horizon does not influence the optimal policy. In our
experiments, however, we consider a sufficiently large finite
horizon to effectively evaluate the performance of our ap-
proach.

4 Methodology
We will now discuss our proposed approach to obtain the
approximately optimal policy for a budget and capacity-
constrained multi-component monotonic MDP. Our ap-
proach follows a two-step process, as shown by the archi-
tectural overview in Figure 1. In the first step we partition
the large multi-component MDP into r groups by solving
a Linear Sum Assignment Problem (LSAP). The cost ma-
trix for this LSAP is derived using statistical metrics that
characterize T i for each component i, and is designed to
maximize diversity within each group by grouping compo-
nents with varied transition behaviors together. This ensures
that all groups have similar aggregate characteristics, which
in turn validates distributing the total budget proportionally
based on group sizes. After partitioning, the total budget is
distributed among the groups in proportion to their sizes.
The second step involves using a meta-trained reinforcement
learning (RL) agent to obtain the approximately optimal op-
timal policy for each group and consequently derive an opti-
mal policy for the overall budget and capacity-constrained
multi-component monotonic MDP. The following subsec-
tions provide a detailed explanation of these steps.

4.1 LSAP-based Partitioning of
Multi-Component MDP

The problem of finding an optimal policy for the budget- and
capacity-constrained multi-component monotonic MDP is
that of finding the optimal solution for the constrained com-
binatorial optimization problem given by (1). Exact methods
like integer linear programming (Schrijver 1998; Floudas

Figure 1: Architectural overview of the proposed approach.

and Lin 2005) are usually used to guarantee optimality of the
solution for combinatorial optimization problems. However,
these methods are not scalable for large numbers of variables
(Solozabal, Ceberio, and Takáč 2020) and hence are imprac-
tical for solving large multi-component MDPs with capacity
constraints. To address this challenge of scalability, we pro-
pose an LSAP-based partitioning approach. We intelligently
partition the large n-component MDP with a capacity con-
straint r and total budget B into r groups, thereby decom-
posing (1) into smaller, more manageable subproblems.

The LSAP (Burkard and Cela 1999) seeks an assignment
of n agents to n positions that minimizes the total assign-
ment cost. In our context, the LSAP cost matrix is con-
structed using the time-to-absorption statistics (TTA) of
each component, which describe the expected time for a
component to reach the absorbing state in the absence of
restorative actions. For component i, let µi denote the ex-
pected TTA and let σ2

µi
denote variance of the expected

TTA. Subsequently, using the pairwise distances between
the TTA statistics of the components, we construct a pair-
wise distance matrix D ∈ Rn×n with

Dij =
√
(µi − µj)2 + (σ2

µi
− σ2

µj
)2.

Thus, D captures the similarity between components i and
j in terms of their respective TTA characteristics. The cost
matrix for the LSAP is given by:

C = −D, (2)

and the LSAP is formulated as (Crouse 2016):

min
x

n∑
i=1

n∑
j=1

Cijxij

s.t.
n∑

j=0

xij = 1 ∀i,

n∑
i=0

xij = 1 ∀j,

(3)

where xij is a binary decision variable indicating whether
component i is assigned to position j. By minimizing the

total cost, which is the negative of the total pairwise dis-
tances, the LSAP effectively maximizes the total distances
between assigned component-position pairs. This results in
assigning components with the most dissimilar TTA char-
acteristics to different positions. After solving the LSAP,
we assign components to groups in a round-robin manner
based on their assigned positions. So, components with as-
signments q, r+q, 2r+q, and so on are assigned to group k,
which is denoted by Gq . This method ensures that compo-
nents assigned to consecutive positions are distributed across
different groups, leading to each group containing compo-
nents with maximally diverse TTA characteristics. This di-
versity helps delay the simultaneous absorption of multiple
components within a group, leading to an improved approxi-
mation of the optimal policy. Furthermore, this LSAP-based
partitioning ensures uniformity in aggregate statistics across
groups, thereby justifying the proportional budget distribu-
tion. Moreover, this partitioning decouples the large multi-
component MDP into r smaller multi-component MDPs
with a capacity constraint of 1. Thus, finding the optimal
policy for each group is computationally more feasible due
to the reduced combinatorial complexity resulting from the
simplified capacity constraints.

4.2 Meta-RL for Partitioned Multi-Component
Monotonic MDPs

In Section 4.1, we introduced our methodology for par-
titioning the components of a large budget and capacity-
constrained multi-component monotonic MDP, into smaller
groups. In this section, we propose a meta-RL-based ap-
proach for obtaining an approximately optimal policy for
each group. Analogous to the budgeted-POMDP (bPOMDP)
framework proposed in (Vora et al. 2023), we model each
group as a budgeted-MDP (bMDP) to enforce adherence
to budget constraints. In a bMDP, the available budget is
augmented as an extra component to the state vector at
each time-step. Note that due to the LSAP assignment and
grouping process, the indexing of components within each
group may differ from their original indices in the multi-
component MDP. For notational convenience, we reindex
the components within each group Gq from 1 to mq , where
mq is the number of components in group Gq . Thus for a

group Gq with mq components and allocated budget b, the
state at time k, sgqk , is given by:

s
gq
k = [s

gq,1
k , s

gq,2
k , . . . , s

gq,m
k , bk], (4)

where s
gq,i
k denotes the state of component i in group Gq at

time k with i ∈ {1, 2, . . . ,m}, and bk denotes the budget
available at time k (with b0 = b). In practice, however, dif-
ferent representations of states might affect the performance
of reinforcement learning algorithms (Lesort et al. 2018).
For our work, we empirically observe that the following rep-
resentation helps the RL agent distinguish between the com-
ponent states and the available budget more effectively:

s
gq
k =

[
s
gq,1
k s

gq,2
k . . . s

gq,m
k

bk bk . . . bk

]⊤
, (5)

The action vector for group gq at time k is denoted by a
gq
k

and follows the definition of ak given in Section 3.
To obtain the approximately optimal policy for each

group, we use a Proximal Policy Optimization (PPO)
(Schulman et al. 2017) algorithm. The reward function for
this PPO agent is defined as:

R(s
gq
k , a

gq
k) =


r1 < 0, if bk < 0,

r2 = −(H − k), if sgq,ik = 0 for any i,

r3 < 0, if
∑m

i=1 1(a
gq,i
k) > 1

r4 = k − αqk, if sgqk , bk > 0,

with qk =
∑m

i=1 s
gq,i
k × 1(a

gq,i
k), |r1| ≥ |r3| > |r2| > |r4|

for all k and 0 < α < 1. Furthermore, H is the mission-
specific planning horizon. Rewards r1 and r3 promote ad-
herence to budget and capacity constraints, respectively.
Furthermore, r2 penalizes the agent when one or more of
the components reach the absorbing state, with the penalty
being higher for smaller values of k. The reward signal r4
provides a positive reward equal to the time-step k, while
imposing a penalty proportional to the state values of the
components for which the agent chooses restorative actions.
This signal incentivizes the agent to maintain s

gq
k > 0 for as

long as possible, while discouraging the unnecessary usage
of restorative actions on components with high state values.

To generalize this PPO agent across groups of compo-
nents and budget values, we employ a meta-training proce-
dure which involves iterative updates of the agent’s policy
network parameters over a randomly selected set of com-
ponent groups and allocated budgets. Using this meta-PPO
trained agent, we obtain an approximately optimal policy
πgq,∗ for each group gq . The overall policy for the large
multi-component MDP is given by:

π∗(sk, ak) = (πg0,∗(sg0k , ag0k), · · · , πgr−1,∗(s
gr−1

k , a
gr−1

k)).

Since the indexing of components within each group dif-
fers from their original indices in the multi-component MDP,
care must be taken when applying the final policy to ensure
the correct mapping between the LSAP groups and the orig-
inal components. While this policy is not guaranteed to be
globally optimal for the entire multi-component MDP, our
empirical results show that it performs well in practice while
satisfying the budget and capacity constraints.

5 Implementation and Evaluation
In this section, we validate the proposed approach by de-
termining an approximately optimal policy for a budget-
and capacity-constrained multi-component monotonic MDP
with a very large number of components. We compare the
performance of the proposed approach against existing base-
lines in the context of planning and scheduling repairs for a
large swarm of industrial robots. Additionally, we perform a
computational complexity analysis to demonstrate the scala-
bility of the proposed approach for varying number of com-
ponents.

We consider a scenario involving the maintenance of a
swarm of n industrial robots, including assembly robots,
picking and packing robots and welding robots, managed by
a team of r repair technicians. Each robot’s health ranges
from 0 to 100 and is modeled using the Condition Index
(CI) (Grussing, Uzarski, and Marrano 2006). Motivated by
the work of Grussing, Uzarski, and Marrano (2006) on mod-
eling infrastructure component deterioration, we model the
stochastic deterioration of each robot’s CI over time using
the Weibull distribution. At each time step, robots can be
repaired to improve their CI. The robot swarm is consid-
ered non-operational when at least one robot has a CI of
0. The swarm is allocated a repair budget of B units for
a planning horizon of 100 decision steps, with each repair
costing 1 unit. Due to the limited number of repair techni-
cians, a maximum of r robots can be repaired at any given
time step. Initially, all the robots have a CI of 100. To eval-
uate the scalability and effectiveness of our approach, we
conduct experiments for various (n, r) pairs. The objective
of the repair team is to maximize the operational time of
the swarm by efficiently choosing the subset of robots to
repair at each time step, while adhering to the budget and
capacity constraints. This objective is modeled as a bud-
get and capacity-constrained multi-component monotonic
MDP, where the state of each component MDP corresponds
to the CI of an individual robot. The state and action vec-
tors for this multi-component MDP follow the formulation
given in Section 4.2. Consequently, the problem is a con-
strained combinatorial optimization problem, as described
in (1). For a scenario with n = 1000 and r = 300, this
optimization problem has approximately 100,000 binary de-
cision variables for a planning horizon of 100 steps.

5.1 Partitioning of Multi-Component MDP
We first evaluate the performance of the LSAP-based group-
ing method for partitioning the robot swarm into smaller
groups. This method is compared with a baseline partion-
ing approach, which involves randomly assigning robots to
groups. The LSAP-optimized position indices of the robots
are obtained by solving (3), and the assignment of robots
to groups is performed using these indices, as described in
Section 4.1. For each robot i in the swarm, we compute its
TTA statistics by averaging the µi and σ2

µi
over 1000 in-

dependent Monte-Carlo simulations. The solution to (3) is
obtained using the linear sum assignment function
of the scipy.optimize module in Python, which imple-
ments a modified version of the Jonker-Volgenant algorithm
(Crouse 2016).

(a) (b) (c)

Figure 2: (a) Variation of d̄ values for different swarm and repair team sizes, where the error bars denote the variance of d̄. (b)
Distribution of d̄ for a swarm of 50 robots and 15 repair technicians. (c) Distribution of d̄ for a swarm of 1000 robots and 300
repair technicians.

(a) (b)

(c) (d)

Figure 3: Average operational time and average repair counts for all four approaches across the four scenarios: (a) (n, r) = (2,1).
(b) (n, r) = (10,3). (c) (n, r) = (100,30). (d) (n, r) = (1000,30).

To compare the performance of the proposed partitioning
approach with the baseline, we use a metric denoted by d̄.
For a given swarm size, we compute the average pairwise
distance between robots within each group, and then further
average these distances across all groups. This overall av-
erage in-group distance is denoted as d̄. A higher value of
d̄ indicates greater diversity within each group in terms of
the TTA statistics of the robots. We compare the values of
d̄ obtained using both the proposed and baseline approaches
for 6 different (n, r) pairs. Table 1 shows the variation in
d̄, achieved using the LSAP-based and baseline partitioning
approaches, for different swarm and repair team sizes, main-
taining a constant n to r ratio. Figure 2a presents a graphical

represenation of this variation. We observe that the LSAP-
based assignment approach achieves higher values of d̄ for
smaller swarm and repair team sizes. However, as the num-
ber of robots and repair technicians increase, both the pro-
posed approach and baseline result in similar values of d̄.
This trend is further illustrated in the distribution of d̄ for
specific scenarios. Figure 2b shows the distribution of d̄ for
a swarm of 50 robots with 15 repair technicians, while Fig-
ure 2c shows the distribution for 1000 robots and 300 repair
technicians. In the case of larger swarm sizes, the distribu-
tions for the two approaches are very similar.

The similarity in d̄ values for larger swarm and repair
team sizes can be attributed to the inherent diversity in

Swarm Size Repair Team Size LSAP Baseline
10 3 28.13 25.67
20 6 41.51 37.70
50 15 44.93 43.59
100 30 50.73 48.39
300 90 47.78 49.20
500 150 48.42 48.40

1000 300 47.51 47.51

Table 1: Average TTA statistics pairwise distance d̄ (in
steps) for 6 different (n, r) pairs, achieved under the pro-
posed and baseline partitioning approaches.

TTA characteristics that is naturally induced by large swarm
sizes. This observation is supported by our theoretical anal-
ysis (see Section 7.1), where we prove that, under certain as-
sumptions, any partitioning method will result in partitions
with approximately equal average pairwise distances as the
ratio n

r grows faster than ln r.
Finally, the smooth and continuous distribution of TTA

characteristics in our context leads to only a small difference
in performance of the two approaches. However, in scenar-
ios where data exhibits distinct clusters or broader variabil-
ity, LSAP can yield significantly higher d̄ values by optimiz-
ing group diversity.

5.2 Meta-PPO for Repair Policy Synthesis
Next, we demonstrate the effectiveness of the proposed two-
step approach for obtaining the approximately optimal main-
tenance policy for the robot swarm. As mentioned in Sec-
tion 4, our approach involves partitioning the swarm into
groups using an LSAP method and synthesizing a repair pol-
icy for each group using a meta-PPO agent. We compare the
proposed approach against the following three baselines:

1. Random Assignment: Robots are randomly assigned to
groups, and a meta-PPO agent is then used to determine
the repair policy.

2. Vanilla PPO: The repair policy is derived for the entire
swarm without partitioning, using a standard PPO agent.

3. Integer Linear Programming (ILP): The repair policy
is obtained by solving the constrained combinatorial op-
timization problem (1) directly using the GUROBI opti-
mizer.

In the vanilla PPO approach, a separate agent is trained for
each (n, r) pair. For the ILP approach, we use GUROBI to
attempt to find an optimal solution to (1). However, due to
computational limitations, GUROBI can only provide opti-
mal solutions for small problem sizes. As the problem size
increases, it employs approximate methods and heuristics,
which can lead to suboptimal solutions. Therefore, the ILP
solution serves as a benchmark for comparison in terms of
performance and optimality primarily for smaller problem
instances where exact solutions can be obtained. We use
the objective function of the constrained combinatorial op-
timization problem (1) as the metric to compare the perfor-
mance of the four algorithms. This metric, denoted by t̄abs,

represents the average operational time of the swarm and is
averaged over 100 independent runs for each scenario. Ad-
ditionally, we also compare the average number of repairs
performed over the planning horizon.

We conduct experiments for four different (n, r) pairs: (2,
1), (10, 3), (100, 30) and (1000, 300). To ensure compara-
bility, we run the ILP solver for the same number of com-
putation steps, as the proposed approach, in each scenario.
Figure 3 presents the performance of the four methods, in
terms of average operational time and average number of
repairs performed, for the above mentioned scenarios. We
observe that for the scenario with 2 robots and 1 repairman,
the ILP solution yields the highest value of t̄abs, as expected,
since this small problem size allows for near-optimal solu-
tions. The other three approaches—LSAP-based meta-PPO,
random assignment meta-PPO, and vanilla PPO—produce
slightly lower, but comparable, values of t̄abs.Since the ca-
pacity constraint is one in this scenario, partitioning is un-
necessary, leading all three approaches to yield comparable
performance. However, as the number of robots and repair
technicians increases, the performance of the ILP and vanilla
PPO approaches deteriorate significantly. For large scenar-
ios, such as the one with 1000 robots and 300 repair tech-
nicians, GUROBI produces poor results within the provided
time frame, as shown in Figure 3d. Even if the ILP solver
were allowed up to ten times more runtime, it would still
fail to find a high-quality solution, underscoring the scala-
bility challenges of the ILP approach. The vanilla PPO and
ILP-based methods scale poorly with increasing number of
robots due to an exponential increase in the state and ac-
tion space. In contrast, both the LSAP-based and random
assignment meta-PPO approaches maintain relatively stable
performance. For larger scenarios, these two approaches re-
sult in similar values of t̄abs. This similarity in performance
is due to the fact that, as the swarm size increases, both ap-
proaches tend to generate partitions with similar diversity
in terms of the robots’ TTA characteristics, as discussed in
Section 5.1.

5.3 Computational Complexity Analysis
Finally, we perform a computational complexity analysis to
demonstrate the scalability of the proposed approach across
different (n, r) pairs. The computational complexity experi-
ments were conducted in Python on a laptop running MacOS
with an M2 chip @3.49GHz CPU and 8GB RAM. Table 2
summarizes the time taken (in seconds) for each step of the
proposed approach for varying number of robots and repair
technicians. We observe that the time taken for the LSAP-
based partitioning step is negiligible in comparison to the
time required for generating policies using the meta-PPO
agent, especially as the number of robots increases. Since
the second step involves applying a pre-trained meta-PPO
model to each group, the time complexity for this step scales
linearly with the number of robots in each group. Therefore,
the overall complexity of our algorithm to expected to be
linear in the number of robots, i.e., O(n). This hypothesis
is confirmed by the log-log plot shown in Figure 4, which
depicts the computational complexity of the proposed ap-
proach as the number of robots increases. The trend in the

Swarm Size (n) Repair Team Size (r) LSAP Partitioning Meta-PPO
2 1 0.5001 4.4594
5 2 0.3905 3.4927
10 3 0.4464 4.9642
20 6 0.3992 8.1406
50 15 0.3956 17.4025

100 30 0.8295 32.1637
500 150 0.6516 182.0258

1000 300 1.2324 290.1350

Table 2: Time taken (in seconds), averaged over 10 runs, for running each step of the proposed approach for varying number of
robots and repair technicians.

Figure 4: Log-log plot showing the computational complex-
ity of the proposed approach for varying number of robots.

log-log plot demonstrates the linear scalability of our algo-
rithm with respect to the swarm size. Additionally, Figure 5
presents a heatmap that captures the variation in computa-
tional time for different combinations of (n, r) pairs. We
observe that the time taken to run the proposed approach
is more sensitive to changes in the number of robots than
to changes in the number of repair technicians. This find-
ing indicates that the overall computational complexity is
dominated by the number of robots, with the impact of the
number of repair technicians being relatively small.

6 Conclusions
In this paper we present a computationally efficient and scal-
able algorithm for solving very large budget and capacity-
constrained multi-component monotonic MDPs. For such an
MDP, the individual component MDPs are coupled due to
the shared budget as well as due to the capacity constraints
which limit the number of restorative actions that can be
performed at a given time step. Existing approaches that de-
couple the multi-component MDP by pre-allocating the bud-
get, cannot be directly applied due to the additional combi-
natorial complexity introduced by the capacity constraints.
To address this challenge, we first partition the large multi-
component MDP into groups, with the number of groups be-
ing equal to the capacity limit. This partitioning is achieved
using a Linear Sum Assignment approach, which ensures
that the components within each group exhibit as diverse
transition probability behaviors as possible. The total budget
is then distributed among the groups in proportion to their

Figure 5: Heatmap showing the time taken for the proposed
approach, across different numbers of robots and repair tech-
nicians. Values are plotted on a logarithmic scale to better
capture the variation.

size. Finally, we use a meta-PPO agent to obtain an approx-
imately optimal policy for each group. Experimental results
from a real-world scenario, involving the maintenance of a
swarm of industrial robots by a team of repair technicians,
demonstrate that our approach outperforms the baselines, es-
pecially in larger problem instances. The performance gap is
significantly higher for non-partitioning approaches, under-
scoring the importance of partitioning the multi-component
MDP. Additionally, the computational complexity analysis
shows that the proposed method scales linearly with the
number of components, making it highly scalable for large-
scale applications. Future work will focus on extending the
algorithm’s capabilities to scenarios involving hierarchical
budget constraints along with the capacity constraints.

References
Altman, E. 2021. Constrained Markov Decision Processes.
Routledge.
Borgi, T.; Hidri, A.; Neef, B.; and Naceur, M. S. 2017. Data
analytics for predictive maintenance of industrial robots. In
2017 International Conference on Advanced Systems and
Electric Technologies, 412–417.
Boutilier, C.; and Lu, T. 2016. Budget Allocation Using

Weakly Coupled, Constrained Markov Decision Processes.
In UAI.
Burkard, R. E.; and Cela, E. 1999. Linear assignment prob-
lems and extensions. In Handbook of combinatorial opti-
mization: Supplement volume A, 75–149. Springer.
Carrara, N.; Leurent, E.; Laroche, R.; Urvoy, T.; Maillard,
O.-A.; and Pietquin, O. 2019. Budgeted reinforcement
learning in continuous state space. In 32nd Advances in Neu-
ral Information Processing Systems.
Chen, Y.; Liu, Y.; and Xiahou, T. 2021. A deep reinforce-
ment learning approach to dynamic loading strategy of re-
pairable multistate systems. IEEE Transactions on Reliabil-
ity, 71(1): 484–499.
Crouse, D. F. 2016. On implementing 2D rectangular as-
signment algorithms. IEEE Transactions on Aerospace and
Electronic Systems, 52(4): 1679–1696.
Floudas, C. A.; and Lin, X. 2005. Mixed integer linear pro-
gramming in process scheduling: Modeling, algorithms, and
applications. Annals of Operations Research, 139: 131–162.
Grussing, M. N.; Uzarski, D. R.; and Marrano, L. R.
2006. Condition and reliability prediction models using
the Weibull probability distribution. In Applications of Ad-
vanced Technology in Transportation, 19–24.
Haksar, R. N.; and Schwager, M. 2018. Controlling large,
graph-based MDPs with global control capacity constraints:
An approximate LP solution. In 57th Conference on Deci-
sion and Control, 35–42.
Hassan, M.; Liu, D.; and Paul, G. 2018. Collaboration of
multiple autonomous industrial robots through optimal base
placements. Journal of Intelligent & Robotic Systems, 90:
113–132.
Hung, Y.-H.; Shen, H.-Y.; and Lee, C.-Y. 2024. Deep re-
inforcement learning-based preventive maintenance for re-
pairable machines with deterioration in a flow line system.
Annals of Operations Research, 1–21.
Kalagarla, K. C.; Jain, R.; and Nuzzo, P. 2021. A sample-
efficient algorithm for episodic finite-horizon MDP with
constraints. In 35th AAAI Conference on Artificial Intelli-
gence, 9, 8030–8037.
Kibira, D.; and Qiao, G. 2023. Degradation Modeling of
a Robot Arm to Support Prognostics and Health Manage-
ment. In International Manufacturing Science and Engi-
neering Conference.
Korte, B. H.; Vygen, J.; Korte, B.; and Vygen, J. 2011. Com-
binatorial Optimization. Springer.
Lesort, T.; Dı́az-Rodrı́guez, N.; Goudou, J.-F.; and Filliat, D.
2018. State representation learning for control: An overview.
Neural Networks, 108: 379–392.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Papadimitriou, C. H.; and Steiglitz, K. 1998. Combinatorial
Optimization: Algorithms and Complexity. Courier Corpo-
ration.

Papakonstantinou, K. G.; and Shinozuka, M. 2014. Planning
structural inspection and maintenance policies via dynamic
programming and Markov processes. Part I: Theory. Relia-
bility Engineering & System Safety, 130: 202–213.
Perlman, Y.; Mehrez, A.; and Kaspi, M. 2001. Setting ex-
pediting repair policy in a multi-echelon repairable-item in-
ventory system with limited repair capacity. Journal of the
Operational Research Society, 52(2): 198–209.
Qiao, G.; and Weiss, B. A. 2018. Quick health assessment
for industrial robot health degradation and the supporting
advanced sensing development. Journal of Manufacturing
Systems, 48: 51–59.
Schrijver, A. 1998. Theory of Linear and Integer Program-
ming. John Wiley & Sons.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Solozabal, R.; Ceberio, J.; and Takáč, M. 2020. Constrained
combinatorial optimization with reinforcement learning.
arXiv preprint arXiv:2006.11984.
Sutton, R. S. 2018. Reinforcement Learning: An Introduc-
tion. A Bradford Book.
Toth, P. 2000. Optimization engineering techniques for the
exact solution of NP-hard combinatorial optimization prob-
lems. European Journal of Operational Research, 125(2):
222–238.
Vora, M.; Grussing, M. N.; and Ornik, M. 2024. Solving
Truly Massive Budgeted Monotonic POMDPs with Oracle-
Guided Meta-Reinforcement Learning. arXiv preprint
arXiv:2408.07192.
Vora, M.; Thangeda, P.; Grussing, M. N.; and Ornik, M.
2023. Welfare Maximization Algorithm for Solving Budget-
Constrained Multi-Component POMDPs. IEEE Control
Systems Letters, 7: 1736–1741.
Wu, D.; Chen, X.; Yang, X.; Wang, H.; Tan, Q.; Zhang,
X.; Xu, J.; and Gai, K. 2018. Budget constrained bidding
by model-free reinforcement learning in display advertising.
In 27th ACM International Conference on Information and
Knowledge Management, 1443–1451.
Xiao, S.; Guo, L.; Jiang, Z.; Lv, L.; Chen, Y.; Zhu, J.; and
Yang, S. 2019. Model-based constrained MDP for bud-
get allocation in sequential incentive marketing. In 28th
ACM International Conference on Information and Knowl-
edge Management, 971–980.

7 Appendix
7.1 Almost Sure Asymptotic Contraction of

Partition Averages
Theorem 1. Let X ∈ Rnk×nk be a symmetric random ma-
trix where the entries {Xij | i ≤ j} are independently and
identically distributed (i.i.d.) standard normal random vari-
ables, i.e., Xij ∼ N (0, 1) for i ≤ j, and Xji = Xij for
i > j. Let G = (V,E) be a complete graph with nk nodes,
where V denotes the set of vertices and E denotes the set of
edges, and the adjacency matrix is given by X .

Partition the node set V into n disjoint subsets
V1, V2, . . . , Vn, each of size k. For each t ∈ {1, 2, . . . , n},
let Et be the edges in the subgraph induced by Vt. Let St

denote the average of the edge weights within subgraph Vt.
Then, for any fixed ϵ > 0, if k = ω(lnn) (i.e., k grows

faster than lnn), the probability that there exist t ̸= l such
that |St − Sl| > ϵ tends to zero as n → ∞. That is,

lim
n→∞

max
V1,V2,··· ,Vn

P (∃ t ̸= l such that |St − Sl| > ϵ) = 0.

(6)

Proof. The number of edges in Et is

|Et| =
(
k

2

)
=

k(k − 1)

2
. (7)

Also, since St is the average of the edge weights within the
subgraph induced by Vt, we have:

St =
1

|Et|
∑

(i,j)∈Et

Xij =
1(
k
2

) ∑
(i,j)∈Et

Xij . (8)

For each t, St is the average of |Et| =
(
k
2

)
i.i.d. standard

normal random variables Xij ∼ N (0, 1). Therefore, St is
normally distributed with mean zero and variance

σ2 =
1

|Et|
=

2

k(k − 1)
. (9)

Similarly, the difference between any two such averages St

and Sl (for t ̸= l) is also normally distributed with mean
zero and variance 2σ2:

St − Sl ∼ N
(
0, 2σ2

)
. (10)

Using the Chernoff bound we have:

P (|St − Sl| > ϵ) ≤ P
(
|St| >

ϵ

2

)
+ P

(
|Sl| >

ϵ

2

)
≤ 4 exp

(
−ϵ2k(k − 1)

32

)
.

(11)

There are at most
(
nk
k

)
possible choices for St. Using the

upper bound on the binomial coefficient, we have:(
nk

k

)
≤

(
enk

k

)k

= exp(k ln(en)).

Therefore, the total number of (St, Sl) pairs is at most(
nk

k

)2

≤ exp (2k ln(en)) . (12)

Applying the union bound over all partitions and all pairs
(St, Sl) within each partition, the probability that there ex-
ists a partition with at least one pair (St, Sl) such that
|St − Sl| > ϵ is bounded by

max
V1,V2,...,Vn

P (∃t ̸= l such that |St − Sl| > ϵ)

≤
(
nk

k

)
·
(
nk

k

)
· 4 exp

(
−ϵ2k(k − 1)

32

)
.

(13)

Simplifying (13), we get:

max
V1,V2,...,Vn

P (∃t ̸= l | |St − Sl| > ϵ)

≤ 4 exp

(
2k(1 + lnn)− ϵ2k(k − 1)

32

)
.

(14)

The exponent in (14) tends to −∞ if k grows faster than
lnn, i.e., k = ω(lnn). This means that the right-hand side
(RHS) of (14) goes to 0.

Thus, if k grows faster than lnn, the probability that any
two group averages St and Sl differ by more than ϵ tends
to zero. This implies that, asymptotically, all St are approx-
imately equal with high probability regardless of how the
partitions Vt are formed. Therefore, under these conditions,
any partitioning method will result in groups with similar av-
erage pairwise distances, making the partitioning algorithm-
agnostic.

